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DEDICATED TO THE MEMORY OF LOTHAR COLLATZ

Erdos and Turan discussed in (Ann. of Math. 41 (1940), 162-173; 51 (1950),
105-119) the distribution of the zeros of monic polynomials if their Chebyshev
norm on [ -1, 1] or on the unit disk is known. We sharpen this result to the case
that all zeros of the polynomials are simple. As applications, estimates for the
distribution of the zeros of orthogonal polynomials and the distribution of
the alternation points in Chebyshev polynomial approximation are given. This
last result sharpens a well-known error bound of Kadec (Amer. Math. Soc. Trans!.
26 (1963), 231-234). '\:: 1992 Academic Press, Inc.

1. INTRODUCTION AND MAIN THEOREMS

In [3] Erdos and Turim considered the distribution of the zeros of a
monic polynomial Pn E I1n, where I1n denotes the set of all algebraic poly
nomials of degree at most n. To be precise, we associate with Pn the zero
counting measure

(A)
= number of zeros of Pn on A

f n ,
n

(1.1 )

where A is any point set of C. Let J.I. be the equilibrium distribution of
[ -1, 1], i.e.,

1 J'{3 dx
J.I.(A)=- ~

7t ~ v' 1- x 2
(1.2)

(1.3)

for any subinterval A = [0(, fJ] of [ -1, 1] and let us assume that all zeros
of Pn lie in [ -1, 1]. Then Erdos and Turin proved that

l(rn-J.l.)([0(,fJ])I~-l83JIOgAn
og. n

250
0021-9045/92 $5.00
Copyright (0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.



DISTRIBUTION OF ZEROS

for any interval [a, fJ] c [ -1,1], where

1
max !p,.(x)1 ~ A n -;,·

-1,,;x"; 1 2

251

(1.4)

This result is sharp up to the constant 8jlog 3. But if we know that an zeros
of Pn are simple then the estimate can be strengthened.

Let us henceforth assume that all zeros x, of PH are simple and contained
in [- 1, 1], i.e.,

(LS)

Moreover, we assume a lower bound for the derivative Ip;,(x;)!, namely

1 1
Ip;,(x')l ~-B :;-;;,

n""
Then we can formulate our main result as

1~ i~ n.

THEOREM A. Let Pn be a monic polynomiallJ'ith zeros (1.5) satis/ring the
conditions (1.4) and (1.6), n ~ 2. Then there exists a constant c (independem
of n) such that

log e"
I(rn - tl)([a, fJ])1 ~ c --'log n

n

for any interpal [a, {3] c [ -1, 1], lvhere

en = max(A n , B,,, n).

(1.7)

We want to formulate Theorem A in a potential theoretic way, which has
the advantage that the conditions on Pn(X) are more symmetric and already
give some insight into the method of our later proof.

Let G(z) denote Green's function of C\[ -1, 1] with pole at infinity, Le..
G(z) = log Iz + J,:2 - 11, where the function 'ojZ2 - 1/.:; is 1 at infinity.
Bernstein's inequality together with (1.4) yields

1 1 log An
-log Ip,,(z)I-G(z)-log)~--n _ n for all ZE C (1.8)

The interpolation formula of Lagrange shows that

1= i Pn(z)
i= 1 p~(XJ(Z - Xi)'
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For z rf. [ -1, 1], let d(z) denote the distance of the point z to the interval
[ - 1, 1]. Then, using (1.6),

1~ IPn(z)1 B 2n
""n d(z) n

or

1 d(z) 1
Ip (z)1 :>----n /' n Bn 2n· (1.9 )

For z E r ,n where a > 1 and r" = {z E c: G(z) = log a} is a level line of the
Green's function G(z), we have

min d( z) =! (a +!)- 1
ZEro 2 a

since r" is an ellipse with foci + 1 and -1 and major axis a + l/a. If we
choose

the inequality (1.9) leads to

1 1 logCn-log IPn(z)I-G(z)-log-2~-K--
n n

(1.10 )

(1.11)

for z E rUn' where K > 0 is an absolute constant independent of n. The mini
mum pririciple for harmonic functions shows that (1.11) is satisfied for all
z with G(z)~logan. Summarizing (1.8) and (1.11) we get

1

1 11 log Cn;;log IPn(z)[-G(z)-log2" :(K-
n

- (1.12)

for all z, where G(z) ~ log an.
Since - (l/n) log IPn(z)1 is the logarithmic potential urn of the measure

Tn and ul-'(z) = -G(z)-log! is the logarithmic potential of the equi
librium distribution f.1, (1.12) can be written as

IU"n(z) - UI-'(z)1 :( K log Cn
n

for all z with G(z)~logan.

(1.13 )

THEOREM B. Let Pn E I1n, n ~ 2 be a monic polynomial with simple zeros
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in [-1, 1] such that for the zero counting measure r" and the equilibrium
measure J1 of [ -1, 1] the inequality (1.13) is satisfied. Then there exists a
constant c > 0 (independent of n) such that (1.7) holds for any intenal
[et, tJ] c [-1,1].

Theorem A is a direct consequence of Theorem E, hence we need only
prove Theorem B.

2. ApPLICAnONS

2.1. Orthogonal Polynomials

Let v be a finite positive Borel measure on [ -1, 1]. Then there exists a
sequence of uniquely determined polynomials ql1 E II,,,

where

q,,(x) = }'"X" + ... , ;:" > 0,

.1I q,,(x) qm(x) dv(xl = Dil• m·
• -1

The zeros Xi' 1:::; i:::; n, of q" are all simple and located in (-1, 1). Let Til

be the zero counting measure of q". To obtain lower bounds for Iq;,(xil! we
follow a suggestion of P. Nevai [8]: The Christoffel-Darboux formula (cf.
Szego [10, p. 43]) yields

,,-I

~ "( ) Y,,~-l '() ()L, qkxi =--q"xi qn-l X ,
k~O }'"

and therefore

2}'o Iq"-l(X;)1 = 2Iqo(x,) q"_l(x;)1

:::; Q6(X i ) + q~ -1 (x;)

since }'n-l:::;2Y,,-2 (cf. [5, p.45]). Hence

1

1, I }'o-q,,(x;) ~-.

y" }'"
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Let Tn be the Chebyshev polynomial of degree n; then the minimum
property of Tn yields

Ilqnll>- II T II = _1_
Yn -- " 2n- 1

and therefore

(2.1)

Moreover, the extremal property of the orthonormal polynomials qn leads
to

where 11·112 is the L 2-norm with respect to the Borel measure v on [ - 1, 1].
Consequently,

Hence we obtain from Theorem A

(2.2)

COROLLARY 1. There exists a constant c> 0 such that the zero counting
measure 'n of the orthonormal polynomial qn satisfies

log n
I('n - /l)([ct, {j])I:( c - (log Ilq,,11 + log n)

n

for any interval [ct, In c [ -1, 1] and any n ~ 2.

If v' ~ K > 0 then Erdos and Turan [3] used the estimate

to obtain

JlOgnI('n - /l)([ct, {j])1 :( c -n-·

In this case Corollary 1 yields



DISTRIBUTION OF ZEROS 255

This estimate was announced by Erdos and Turan in [4, p. 111] without
proof.

If we apply Corollary 1 to the zeros of the orthonormal Pollaczek poly
nomials (cf. Szego [10, Appendix, p. 393J) then

since the Chebyshev norm of these polynomials is O(exp(cm I2
)) for some

constant IX > O.

2.2. Chebyshev Approximation

Let f E C[ -1, 1J and let Pf~ denote the polynomial of best approxima
tion to f with respect to II". Then there exist n + 2 alternation points

of the error function f - P:: such that

,') ..... \
\ ... j j

and

O~i~n+ 1, (2.4 )

l(f- p,nCrJI = (_1)1 (j(f - p::,)CrJ, O~i~n+ 1, (2.5 )

where 0 = 1 or (j = -1 is fixed and Ii ·11 is the Chebyshev norm on [ -1, 1J
If we associate with p" the discrete measure

number of alternation points F, in A
Ji,,(A) := 2" (2.6;

n+

where A is any point set of [ -1, 1], then Kadec [6J proved for any f > 0
that

(2.7)

for a subsequence of integers n, where Co is an absolute constant depending
on e.

In [1,2] Blatt and Lorentz showed how to improve (2.7) by using the
Erd6s-Tunin estimate (1.3): Let
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and
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where q" E II" and T,,+ 1 is the Chebyshev polynomial of degree n + 1. Then

and therefore

Hence, if a" + 1 -=I 0 the polynomial

(2.8 )

is a monic polynomial and

(2.9)

Following the reasoning of Kadec, since limn _ 00 en = 0 there exists a sub
sequence {nJ~ 1 such that enl ~ 1 and

for n=nj,j= 1, ...,

and therefore, for such n

(2.10)

or by (2.9)

(2.11 )

Now, the alternation points Xi are separated by the zeros of PH 1 and the
Erdos-Tunin estimate (1.3) yields

JlOgn1(J1,,-/l)([a, 13])1 ~c -n-

for the subsequence nE {nJi== 1 .
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But it is also possible to obtain lower bounds for the modulus of p;, + I

at the zeros: Because of (2.3 )-(2.5)

( _1)i b(p~+ 1 - p,~ )(yJ = (_1)i b[(f- p: Hy') - (f - P:+ i )(Yi)]

or, if an + 1 '1= 0

Since

together with (2.10), we conclude that

(2.12)

for a subsequence of integers n. Let

Xi' i=l, ...,n+l,

be the zeros of p" + 1; then

-1:SYO<XO<Yl<Xl< ... <Y,,<X,,<Y,,+,:Sl (2. i3)

and the inequality (2.12) leads to the crucial lower bound for ip~+ t(x,ll.
namely

LEMMA 1. For all O:s i:S n

(2.14 1

Then Theorem A, together with the separating condition (2.13), yields

COROLLARY 2. Let [ct, fJJ c [ -1, 1]. Then the discrepancy betll'een the
equilibrium distribution p and the measure Pn' counting the alternation points
J'i off- p,;, can be estimated by
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for a subsequence of integers n, where c is an absolute constant independent
off and n.

It remains to prove (2.14).

Proof of Lemma 1. We may confine ourselves to two situations:

(a) 0 < i < n, -4 (l)n+ 1
Pn+I(Y;)::;:;7 2: '

Then let Xi < Xi < Xi + 1 be the zeros of p~ + 1 nearest to X,. Since all zeros of
Pn+1 are real and simple the same property holds for all derivatives.
Therefore

(2.15 )

and

(2.16 )

Let us now assume that

(2.17)

Since Xi + l -xi <2, there exists because of (2.15) and (2.16) a point
xi<I];<Xi + 1 such that P~+I(l]i»(2In2)(1/2)"+I. Consequently, there
exists a point

Analogously, there exists a point

such that P;; + 1(iL) > O. (2.18 )

(2.19 )

Since Pn+1 has a relative minimum at ,x i and a relative maximum at .X i + I '

we know that

and (2.20)

Because of (2.18 )-(2.20) there exist at least 3 zeros of p~ + 1 in the open
interval (Xi' Xi + 1)' Moreover, there exist i zeros of p~+ 1 in ( - 00, x;] and
n - i zeros of p~ + 1 in [x i + I, (0). By Rolle's theorem, the function p~ + 1 has
at least i-1 zeros in (-oo,x;) and n-i-1 zeros in (Xi + I ' (0). Adding
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together the number of all these zeros we have n + 1 zeros which
tradicts P;; + I E II" _I' P;; + I ~ O.

con-

(f3) i=O or i=n:
As in case (IJ() an analogous argument concerning the zeros of p;; + I leads
to a contradiction if we assume that

or

3. PROOF OF THEOREM B

For .cEC\,[ -1,1] let

<p(z) = z + V,.::2 -1,

where /;:2 - 1 is asymptotically z near infinity. Then <p(z) maps
C\, [ - 1, 1] conformally to the exterior of the unit disk. The inequality
(1.12), resp. (1.13), can be written as

I ' log e"
IRe 1(z)1 ~K-

n

for all z with G(z)~log(J", where

1 1
h(z) =-log p,,(z) -log (,9(z) -log:;;-.

n L

Differentiating we obtain for z ¢ [ -1, 1]

, 1" 1 qJ'(z)
h (2)=- L ----,.

n;~lz-x; <p(Z)

Let P be any polynomial and let us consider the integral

1 "
1= -, j h'(z) p(z) d:::

2m T G

(3,1)

{3.2j

(3.3 )

(3.4 )

over the ellipse T(J in the positive sense, (J> 1. The integral In (3.4) is
independent of (J and
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Now, we want to construct the polynomial p as an approximation of the
characteristic function of [ex, P] to obtain by (3.5) an estimate of

I('" - Il)( [ex, P]) I·

First remark that we have only to consider the case [ex, P] = [ex, 1] and
to prove

log C"
(',,-Il)([ex, 1]) ~ c--log n,

n

because (3.6) implies analogously

But then (3.6) and (3.7) yield

I('" - Il)( [ex, P] )I~ 2c log Cn log n
n

for any interval [ex, P] c [ -1,1].
In the following let Il( [ex, 1]) ~ 1- l/n, since otherwise

(3.6)

(3.7 )

and (3.6) is proved.
Fix )' > 0 such that ex = cos y and y E [0, 1t]. Now, we construct an

approximation X,,(t) for the characteristic function X(t) of the interval
[ - y, y] as follows: Let

for It I ~)' and It I ~}' + l/n

for }' < It I <)' + 1/2n

for y + 1/2n < Itl < )' + l/n

and define

X,,(t)=4 ['Xl fcc u(~)d~dx.

Then X~(t) is continuously differentiable and

X~(t) ~ 2n for all t E IR
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and twice differentiable at all t where

Itl #{"I"}'+2
1
'I'+~}

11 n

with

Moreover, 0 ~ Xn(t) ~ 1 and

261

(3.8)

Xn(t)= 1

Xn(t) = 0

for Itl~')I,

for It I ?: i' + lin.

By Jackson's theorem there exists an odd trigonometric polynomial

n4

sn(t) = L. Gvsin vt
v = 1

of degree at most n4 such that for all t E [ - n, nJ

(3.10)

where w( t), t > 0, is the modulus of continuity of the function X;,( t) and c l'

c2 > 0 are absolute constants. Next, we integrate X~ - s" and obtain

I: (X~-sn)(x)dx=Xn(t)-S,,(t),

where

4
n G

Sn(t) = - L. -2'cosvt+bo
v = 1 V

and

n4

" G"bo= Xn(O) + L, -.
v= ~ V

Because of (3.10) there exists a constant C3 > 0, independent of 11, such that

IXn(t) - Sll(t)1 ~ c;
n-

640'693-3
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for all tE [-n, n]. Now, let us define the polynomial p arising in (3.4) by

,,4 1 ,,' ( 1 )av avp(z)= - L -T,,(z)+bo= --2 L - (l)v+---; +bo,
v~lV v~lV (I)

where w=<p(z). We observe that

for all t

for Itl ~ )' + (lin)

and

for all ItI ~}'
for all t.

Hence,

Let z = ljJ(w) be the inverse mapping of <p(z); then

1 f <p'(z) 1 f2
" 'it-2' -(-) p(z) dZ=-2 p(ljJ«(Je » dt,

m Fa <p Z n °

(3.11)

where w = (Je it
, (J> 1. Fix (J* > 1. Since the above integrals are independent

of r tn (J> 1, and the function po ljJ is uniformly continuous on
{w: 1~ Iwi ~ (J*}, then

(
If <P'(Z») C4Re -2' -(-) p(z)dz ~fl([ct, 1])+-.
m Fa <P z n

Inserting (3.11) and (3.12) in (3.'5) we have

c-
Re I ~ (r" - fl )( [ct, 1]) - -2,

n

where C5 is an absolute constant. On the other hand

1=-\ r (~P~(ljJ(W» ljJ'(w) !) p(ljJ(w» dw
2m JI"'I~O" n p,,(ljJ(w» w

= -\ ~i !!-- (IOgP,,(ljJ(:»2") p(ljJ(w» dw
2mn l"'I~O"dw w

(3.12)

(3.13)
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and partial integration yields

1 1 J' p,,(ljJ(w))2" d
1=--.- log " -p(ljJ(w))dh'.

2m n IWI ~ 0' \1' dw

The function

H( )
11 p,,(ljJ(w))2"

It' = - 0 g ~'---'---'-'--

n w"

263

(3.14)

is a single-valued analytic function in Iwl > 1, including the point at infinity
if we fix HI oc: ) = O. Because of (1.12) we know that

log en
IReH(w)1 ~J..:--

n

for all z with 1)1'1 ~ (J". Then there exists a constant C6 > 0 such that

log n log e"
I 1m H( IV) 1 ~ C6 ---=-~---'-'

n
(3.lS )

for all 1)1'1 ~ 1+ 2n- 8 (ef. P6lya and Szego [9, Problem 288, p. 140]). The
Laurent series of

YO

H(w) = L Ck W -
k

k~l

has real coefficients and therefore, by (3.14),

1 ( YO )( ,,4 , 1 )) 1 1 ,,4
1=-. f L CkH,-k L a,,(w"--;-;; -:dw=-2 L ak ck

4nl'lwl~0' k~l "~1 H H' k~l

is real-valued. On the other hand, for It' = (Je
it and

p*(w) = L a"w"
\' = 1

we obtain

r Im(H(w)) Im(p*(w)) dt
-IT

,,4

= -n L akck'
k~l

(3.16)
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Hence,
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1 fIT
1= - 2rr _IT Im(H(w)) Im(p*(w)) dt

where w=O"eit
, 0">1. By (3.15), for Iwl=1+2n- s

C6 log n log Cn fIT
III ~-2 11m p*(w)1 dt.

rr n -IT

(3.17 )

The following lemma shows that the last integral is bounded. Conse
quently, there exists C7 > 0 such that

log CnIII ~ C7 --log n,
n

so (3.13) leads to
log Cn(Tn - /l)([et, 1]) ~ Cs --log n,

n

with absolute constant Cs, independent of n.
It remains to estimate the integral in (3.17).

LEMMA 2. Let w = O"e it
, 0" = 1+ 2n -s; then the integral

r 11m p*(w)1 dt
-IT

is bounded by a fixed constant, independent of n.

Proof We obtain for w = e il

p*(W) = 5n(t) + isn(t),

where sn(t) is defined by (3.9) and sn(t) is its conjugate trigonometric
polynomial. We have
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for all n ;?; 1, where C9 is a constant which we choose greater than 4 for later
purposes. Therefore

Now, we assert

fn: Is,.(t)1 2 dt=fn: Is,.(t)12dt~c9n.
"-IT "-Tr

(3.18 )

for all t. (3.19 )

Let us assume that (3.19) is false. Then there exists a point to such that

Is,.(to)! = max Is,.(t)l;?; C9n3.
-rr~t~rr

Bernstein's inequality yields

Is~(t)1 ~ n4 max ISn(t)1 = n4 iSAto)1
-rr~r~rr

for all t and by the mean value theorem

it follows that

for all It - tol < 1/2n4 and therefore

because of C9 > 4. But this is in contrast to (3.18).
For w=e il we obtain from (3.10) and (3.19)

Ip*(w)l = Jls,.UW + Is,.(tW ~ clO n3
.

An inequality of F. Riesz (cf. [7, p. 40]) yields

for all Iwi = 1 and therefore

I
d *( l\ 7 ,.' 7-p W ~clOn (J ~clln

dw
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for Iwl <() = 1+ 2n- 8
• Then
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2c l1
Ip*(w)-p*(wo)1 <

n

for all w = w(t) = (1 + 2n -8 )eit
, W o= wo(t) = eit

• Finally, we have

4nc 2nc? ·rr

<-_l1+--f'+j Ix~(t)1 dt.
n n -rr

But then the right-hand side is bounded since

r IX;,(t)ldt<2.
-rr

4. SIMPLE ZEROS ON THE UNIT CIRCLE

In [4] Erdos and Tunin investigated the distribution of zeros of a monic
polynomial Pn E lIn bounded on the unit disk. Let us now assume in this
case that all zeros Zi of Pn are simple zeros of the unit circle. Then we have
to replace (1.4) by

and the inequality (1.6) by

max IPn(z)1 < A"
Izl '" 1

(4.1 )

(4.2)

observing that the capacity 1 of the unit disk takes over the role of the
capacity of [-1, 1], which is!.

If we reformulate conditions (4.1) and (4.2) using the logarithmic poten
tials of ! It and the arclength measure J1 of the unit circle, we have to sub
stitute these inequalities by

IU<n(z) - U"(z)1 <K log Cn

n
(4.3 )
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for all Izl? 1+n- 8
• We remark that (4.3) is just the same inequality as

(1.10) of Theorem B since

UP(z) = G(z) = log Izi.

Now, some slight modifications in the above proofs immediately yield

THEOREM C. Let Pn E II,,, n? 2, be a monic polynomial with simple zeros
on the unit circle such that either (4.1) and (4.2) or (4.3) hold. Then for any
subarc

S~.fJ= {z: Izi = 1, ct~argz~l3}

of the unit circle,

(cx~f3)

log C"1(,,, - fl)(S~,fJ)1 ~ c--log n,
n

(4.4 )

where c is an absolute constant independent of nand C" = max(A", Bn , n) in
the case (4.1), (4.2).

5. How SHARP ARE THE RESULTS?

Let T" be the Chebyshev polynomial of degree 11. Then T,,(x) has the
zeros

y 2)-1 n
~. =cos--
'oj n 2'

and the zero counting measure ,,, satisfies

. 1
1(,,, - fl)( [ct, {3])1 ~-

n

for any interval [ct, {3] C [ -1, 1]. Since

1
IIT"iI =2,,-1

Theorem A yields

and 1 I n I nIT;'(~)I =2,,-1 . (2' 1'( /2 \ ?-2,;-=-t,sm :;- In n,

. (log n)2
I('n - fl)( [ct, f3] )I~ c .

n
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If we consider
[ -1,1 + (log n/nf],
show

H.-P. BLATT

the same polynomials on the interval 1=
then some calculations together with Theorem A

for any subinterval [a, P] of I, where j1 denotes the equilibrium distribu
tion of I. But the real discrepancy between rnand j1 is O(log n/n). Hence
Theorem A seems not far way from being optimal.
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