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DEDICATED TO THE MEMORY OF LOTHAR COLLATZ

Frdds and Turan discussed in (Ann. of Math. 41 (1940), 162-173; 51 (1950),
105-119) the distribution of the zeros of monic polynomials if their Chebyshev
norm on [ —1, 1] or on the unit disk is known. We sharpen this result to the case
that all zeros of the polynomials are simple. As applications, estimates for the
distribution of the zeros of orthogonal polynomials and the distribution of
the alternation points in Chebyshev polynomial approximation are given. This
last result sharpens a well-known error bound of Kadec (Amer. Math. Soc. Transl.
26 (1963), 231-234). € 1992 Academic Press, Inc.

1. INTRODUCTION AND MAIN THEOREMS

In [3] Erd6s and Turan considered the distribution of the zeros of a
monic polynomial p, € I1,, where [T, denotes the set of all algebraic poly-
nomials of degree at most n. To be precise, we associate with p, the zero
counting measure

number of zeros of p, on 4
(d)= : £ 007 (1.1)

where A is any point set of C. Let u be the equilibrium distribution of
[—1,1], ie.

178 dx
u(A)=—ja -

T
for any subinterval 4 =[a, 8] of [ —1, 1] and let us assume that all zeros
of p, liein [ —1, 1]. Then Erd6s and Turan proved that

8 log 4,
[(t,— )(Los ﬁ])l<@ /—n— (1.3)

250

(1.2)
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for any interval [a, Bl <[ —1, 1], where

o~
-
N

1
<A,
max ( {pn(x)l ~ 411 2;;

—1<€x<g

This result is sharp up to the constant 8/log 3. But if we know that all zeros
of p, are simple then the estimate can be strengthened.
Let us henceforth assume that all zeros x, of p, are simpie and contained
inf[—1,17 ie.,
—1<€<x <y, < -- <x, <1 (1.5}

z 3

Moreover, we assume a lower bound for the derivative |p,(x;)|, namely

AN

i<

,
>
o

11
ANl v
'pn(Yt)l B,, 2

Then we can formulate our main result as

THEOREM A. Let p, be a monic polynomial with zeros (1.5} satisfying the
conditions (1.4) and (1.6), n = 2. Then there exists a constant ¢ {independen:
of n) such that

log C,,
"

[z, —u)([o, B <c

logn

[
~1
St

for any interval [a, flc [ —1, 1], where
C,=max(4,, B,, n).

We want to formulate Theorem A in a potential theoretic way, which has
the advantage that the conditions on p,{x) are more symmetric and already
give some insight into the method of our later proof.

Let G(z) denote Green’s function of C\ [ —1, ! ] with pole at infinity, i.e..
G(z)=log |z +./z>— 1|, where the function ./z°—1/z is 1 at infinity.
Bernstein’s inequality together with (1.4) yields

1 1 log4,
~log ()] ~ Glz) — log 5 <~

forall zeC.

oo,
o,
G

Sawr

The interpolation formula of Lagrange shows that

n

1= Z pn(z)

e

P )z —x;)
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For z¢ [ —1, 1], let d(z) denote the distance of the point z to the interval
[—1, 1]. Then, using (1.6),

|2.(2)]
1<n )

B,2"

or

ldiz) 1
Ipule) >~ 5

(1.9)

n

For zel,, where 6 >1and I',= {zeC: G(z)=log g} is a level line of the
Green’s function G(z), we have

min d(z)=%(a+l>—1

zely [

since I, is an ellipse with foci +1 and —1 and major axis ¢+ 1/o. If we
choose

6=0,:=1+n"" (1.10)
the inequality (1.9) leads to

log C,
n

1 1
~log|p,(z)| —G(z) —log 5> ~« (L11)

for zeI',, , where k >0 is an absolute constant independent of #. The mini-
mum principle for harmonic functions shows that (1.11) is satisfied for all
z with G(z) = log 6,,. Summarizing (1.8) and (1.11) we get

log C,

1 1
5108 [p.(2)| - G(z) —log 5} <& (1.12)

for all z, where G(z) = loga,.

Since —(1/n)log |p.(z)| is the logarithmic potential U™ of the measure
7, and U*z)= —G(z)—log} is the logarithmic potential of the equi-
librium distribution g, (1.12) can be written as

log C
|U™(z) — UH(2)| sx—ofgn—" (1.13)

for all z with G(z) =log o,,.

THEOREM B. Ler p,ell,, n=2 be a monic polynomial with simple zeros
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in [—1, 17 such that for the zero counting measure t, and the equilibrini
measure 1 of | —1, 1] the inequality (1.13) is satisfied. Then there exists a
constant ¢>0 (independent of n) such that (1.7) holds for any interval

[C{, ﬁ]C [_L 1]

Theorem A is a direct consequence of Theorem B, hence we need oniy
prove Theorem B.

2. APPLICATIONS

2.1. Orthogonal Polynomials
Let v be a finite positive Borel measure on [ —1, 17]. Then there exists a
sequence of uniquely determined polynomials ¢, € 7,
q"(X) = ’}ynx" + ey > Oa
where
~l

| 20X @) () =0,

The zeros x;, 1 <i<n, of g, are all simple and located in (—1, 1). Let 7,
be the zero counting measure of ¢,. To obtain lower bounds for |g,(x,)! we
follow a suggestion of P. Nevai [8]: The Christoffel-Darboux formula {cf.
Szegd [10, p. 43]) yields

n—1

Y gix) =1t g (x) g ilx,)
k=0 ’yn

and therefore
2’}'0 |qn~l(xi)| :2 Iqo(xz) qn~1(xi)|
sq(z)(xi)“f'q)zzfl(xi)

Vn-1

‘))

S q;r(xi) qn-l(x[)

n

<2q,(x;) 4, (X)),

since v, , <2y,_, (cf. [5, p.457). Hence

1 )
= gi(x)| =2
‘yl’l ’}' n
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Let T, be the Chebyshev polynomial of degree n; then the minimum
property of T, yields

gl 1
T>1|Tn“_2n,.1
and therefore
. 2.1
q( " N 2"1 @h

Moreover, the extremal property of the orthonormal polynomials g, leads
to

1

1=lg.l.<v, \\Tﬂv\y AT

where || -[|, is the L?-norm with respect to the Borel measure von [ —1, 1.
Consequently,

llgalt Ilqnll 1

2.
Vr ’}’0 zn—l ( 2)

Hence we obtain from Theorem A

COROLLARY 1. There exists a constant ¢ >0 such that the zero counting
measure 1, of the orthonormal polynomial g, satisfies

(T — u)(La, ﬁ])|<c " (log 4] +log n)

for any interval [a, Blc[—1,1] and any n= 2.

If v/ 2 k>0 then Erd6s and Turan [37] used the estimate

gl = O(n)

(2, — u)( [ )] <e /‘°g”.

In this case Corollary 1 yields

to obtain

I(t, — u) Lo, B <

(log n)?
=
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This estimate was announced by Erdds and Turan in [4, p. 1117 without
proof.

If we apply Corollary 1 to the zeros of the orthonormal Pollaczek poiv-
nomials (cf. Szegé [10, Appendix, p. 3931} then

(20— m)([2 BT = O (1"%”);

-\/ "

since the Chebyshev norm of these polynomials is O(exp{an'?)) for some
constant a > 0.

2.2. Chebyshev Approximation

Let feC[—1,1] and let p} denote the polynomial of best approxima-
tion to f with respect to [7,. Then there exist » + Z alternation points

'—ISJ’0<)’1<"'<,’J’1+1<1 {23}
of the error function f— p¥ such that
(f=pDyd=1/—pXl, 0<isn+l, (2.4}

and
=) =(=D"6(f—p¥)y), 0<i<n+1, (2.5}

where 6 =1 or = — 1 is fixed and |j-| is the Chebyshev normon [ 1, 1.
If we associate with p, the discrete measure

number of alternation points y,in 4
n+2

u,(A) = , (2.6

where A4 is any point set of [ —1, 1], then Kadec [6] proved for any ¢ >0
that

. ! .
[(ptn— )Lty ﬁ])l<cegﬁ-: (2.7}

for a subsequence of integers #, where ¢, is an absolute constant depending
on &.

In [1, 27 Blatt and Lorentz showed how to improve (2.7) by using the
Erdoés-Turan estimate (1.3): Let

p¥z)=a,z"+ -,
e,=f—psl
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and
Prot—Pi=0u1Tny 1+ qns
where ¢, € I, and T, , , is the Chebyshev polynomial of degree n + 1. Then
ldn il 1 T,inll <e,—e,
and therefore
a1l < (€, — e,y 1)2%

Hence, if a,, ; #0 the polynomial

p:r —p)’zk
Pyt = (2.8)
ay.i
is a monic polynomial and
e, +e,.1 1
1pas il ST (2.9)

€n—€n 2n‘

Following the reasoning of Kadec, since lim,, _, e, =0 there exists a sub-
sequence {n;}72, such that e, <1 and

4
e,,HS(l—;i)en for n=n;,j=1,.,

and therefore, for such n

2
en+en+1 n-
—g._
€n—€nt 2

(2.10)
or by (2.9)

1 n+1
12,01l <n? (§> ) (2.11)

Now, the alternation points x, are separated by the zeros of p,, , and the
Erd6s-Turan estimate (1.3) yields

e, = 1T, D) <[5

for the subsequence ne {n;} 7 ,.
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But it is also possible to obtain lower bounds for the modulus of p, _,
at the zeros: Because of (2.3)-(2.5)
(=Y 3(pke i =Py = (= 1) SL(f = PNy ) = {f =P} Nyt

>€,,'-€,1+1

or, ifa,, #0

. N €€,
sign(a, . | )(—1)"0p,1(3) > =

1
)an+l\

Since

[ I Tyl SN o —pXll<e,+e,. 1,

together with (2.10), we conclude that

) o A /1\n+1 .
Slgn(an-!—l)(_I)Ibpn+l(yi)>_k—') %2'1"{}
no\2/
for a subsequence of integers #n. Let
X, i=1.,n+1,
be the zeros of p, ., (; then
—lg}'0<x0<}’1<x1< <}‘n<xn<:‘in+’.<i :2;‘3}

and the inequality (2.12) leads to the crucial lower bound for |p, . (x,}].
namely

Lemma 1. Forall 0<i<gn

2
-
[N

2 1 n+1 »
lp:,“(xin>~2( ) | 2

Then Theorem A, together with the separating condition (2.13}), yields

CorOLLARY 2. Let [a, Bl [ —1, 1]. Then the discrepancy between the
equilibrium distribution u and the measure y,, counting the alternation poinis
¥; of f—pX, can be estimated by

no

(log n)*
23

= (Lo Bl)I s €
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Sfor a subsequence of integers n, where c is an absolute constant independent
of f and n.

It remains to prove (2.14).

Proof of Lemma 1. We may confine ourselves to two situations:

—4/1 nt 1 4 1 n+1
(¢)0<i<n, pn+l(yi)<72—(§) ’ p"+1(y"+l)>;5<§) :

Then let X, < x,< %, be the zeros of p;,, ; nearest to x,. Since all zeros of
D..1 are real and simple the same property holds for all derivatives.
Therefore

. —4 /71 n+1
Pn+1(xf)<—’17(§> (2.15)
and
R 4 1 n+ 1
pn+1(x,-+1)>;5(§> : (2.16)
Let us now assume that
. 1 n+1
O<piilxd<=s{3) - (2.17)
ne\2

Since X;,,—x;<2, there exists because of (2.15) and (2.16) a point
x;<n;<Z%;., such that p,.,(n,)>(2/n*)(1/2)"*1. Consequently, there
exists a point

X, <f; <X such that p;,_ ,(7,)>0. (2.18)
Analogously, there exists a point
R, <], <X, such that p’, () <O. (2.19)

Since p,, ., has a relative minimum at X, and a relative maximum at %, ,,
we know that

Prn1(X)>0 and Pn1(Xi1) <0 (2.20)

Because of (2.18)—(2.20) there exist at least 3 zeros of p,,, in the open
interval (%, &, ,,). Moreover, there exist i zeros of p;,,, in (— o0, ¥;,] and

n—izeros of p,,,,in [%;,, oo). By Rolle’s theorem, the function p; , , has
at least i —1 zeros in (—oc, X;) and n—i—1 zeros in (X;,,, o0). Adding
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together the number of all these zeros we have n+1 zeros which con-
tradicts py, € l,_y, py .1 #0.

(B)i=0  or

As in case () an analogous argument concerning the zeros of g, leads
to a contradiction if we assume that

i=n:

( , 2 1 n4+i ) ) . 2 i/l)nd—l
|Pn+l(x0)|<; E or !p”+1('{”+1"|<;1.5%\§/ V

3. PrROOF OF THEOREM B

For zeC\[—1,1] let

N

pz) =2+~ L.
where ./z*—1 is asymptotically z near infinity. Then ¢(z) maps
Cy[—1, 1] conformally to the exterior of the unit disk. The inequality
(1.12}, resp. {1.13), can be written as

log C,

|[Re h{z)| <« (3.1
n

for all z with G(z) 2log o, where

1 1
hiz)=-log p,(z) —log ¢{z} —log 3 (3.2
Differentiating we obtain for z¢ [ —1, 1]
18 1 ()
hi(z)=— Z, (3.3}
a2 niglz_xi () o

Let p be any polynomial and let us consider the integral
I= [ () ple) -
_ZniJrgl o )

over the ellipse I', in the positive sense, o> 1. The integral in {34} is
independent of ¢ and

1y 1 et
" n Z plx) ZniJ

plz)d-. (3.5%
i=1 Iy @(Z)
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Now, we want to construct the poiynomial p as an approximation of the
characteristic function of [«, 8] to obtain by (3.5) an estimate of

(t, — )L, B

First remark that we have only to consider the case [, f]=[a, 1] and
to prove

log C
(ta—w)([% 11) < e ——"log n, (3.6)
because (3.6) implies analogously
log C
(to— ([~ 1L a])<e—=logn (37)

But then (3.6) and (3.7) yield

log C
(20— 1)L BT < 26 ==~ log m

for any interval [a, f]lc=[—1,1].
In the following let p([a, 1]) < 1—1/n, since otherwise

1
(T, —u)([o, 1]) <=
n

and (3.6) is proved.

Fix y>0 such that a=cosy and ye[0,n]. Now, we construct an
approximation y,(f) for the characteristic function y(¢) of the interval
[—7, ] as follows: Let

0 for |f|<yand|tf|=y+ /n
u(t)=< —n*> for y<|t|<y+1/2n
n? for y+12n<|tf<y+ 1/n

and define

w=4 [ w@ax

Then y,(2) is continuously differentiable and

1n(t)<2n forall reR
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e
N
iy

and twice differentiable at all t where

1 1
It}#{'y, *,'+5—,7+—}
4l

n

with

=
<
VA
N
Y
IS
w
o0

Moreover, 0<y,(1)< 1 and

1a(t)=1 for [ei<y,

1a()=0 for |t|=zy+1/n

By Jackson’s theorem there exists an odd trigonometric polynomial

w

s.(1)=Y a,sin v {

v=1

tad
)

of degree at most »* such that for all re [ —m, 7]
1y
1= 50) <c1w<—4)<cz (3.10)
n

where w(z), 1> 0, is the modulus of continuity of the function y,(r) and ¢,,
¢, >0 are absolute constants. Next, we integrate y, — s, and obtain

| t=s0) dv =50 = 5,00

where

o
S(t)=~ 3 a—v“—cos Vi + by

v=1
and
n4 a
bo=1,(0)+ ¥, =~

v=1

Because of (3.10) there exists a constant ¢, > 0, independent of », such that

a8 = Su0)] <2
4]

640°693-3
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for all re[ —mx, =]. Now, let us define the polynomial p arising in (3.4) by

12 1
_—Z—T +b0:_52 ( v>+b0’
v=1 =

where o = ¢(z). We observe that

plcos 1) < {1 +les/m)  for allt

c3/n? for |t =y+(1/n)
and
paosnyz {1 (o) rai S
Hence,
1 g C3
;; p(x,-)?r,,([a,l])—h—z. (3.11)

i=1

Let z=1(w) be the inverse mapping of ¢(z); then

1 9'(2)

2 dr, o(z) plz) dz f pp(oe™)) dt

where w =oe”, o0 > 1. Fix ¢* > 1. Since the above integrals are independent
of I',, o0>1, and the function peoy is uniformly continuous on

{w:1<|w|<a*}, then

1 @'(z)
Re <2m fr o (z)dz) <u(fe 1])+— (3.12)
Inserting (3.11) and (3.12) in (3.5) we have

Re I3 (1, — p)([ 1])—5’1’1, (3.13)

where ¢ is an absolute constant. On the other hand

_Lp o (1B 1y

I= 2ni jlwl - (n (W) W> p(Y(w)) dun
11 d (. p.Y(w)2"

=2_m2f|,,,|=a;1$(‘°g—wn—)p(tﬁ(w))dw
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and partial integration yields

() dw. (3.14;

ir 2" d
1~_J logpn(i/f(u)) 4
27”” lwj=a

I= ——
w” dw *

The function
1 )2”
H(uv):—logp”('/’(t))
n W
is a single-valued analytic function in |w| > 1, including the point at infinity
if we fix H{cc)=20. Because of {1.12) we know that

log C,

IRe H(w)| <x
n

for all z with |w| = ¢,. Then there exists a constant cg > 0 such that

lognl
Im H(w)| <66yﬂig_€g (3.15)

for all |w| =1+ 2n"8 (cf. Pdlya and Szegé [9, Problem 288, p. 1407]). The
Laurent series of
H(w)= k

k

I8

CkH'7
1

has real coefficients and therefore, by (3.14},

1 [ x VA © I p 1 Z
=— ; AW = —dw== a,c,
Amidyy =0 <k§1 i ><‘Z=:1 a‘ (H Wv)) w " 2=, ‘

is real-valued. On the other hand, for w = ge” and

o

7

pr(w)=

1 ™

aw’ {3.16)
1

v

we obtain

r Im(H(w)) Im(p*{w)) dt

= _F < Z c,0 % sin kt)( Y a,c’sin vt) dt

k=1 v=1

714
=—7 ) ac.
k=1
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Hence,

=L j " Im(H(w)) Im(p*(w)) di
27[ —x

where w=ge”, 6> 1. By (3.15), for |w|=142n"%

log nlog C,
III\CZM—f Im p*(w)| dt. (3.17)

n

The following lemma shows that the last integral is bounded. Conse-
quently, there exists ¢, > 0 such that

log C

[l < Zlog n,
n

o (3.13) ieads to
log C,
(Tn _ﬂ)([“a 1])< Cg Tlog n,

with absolute constant cg, independent of .
It remains to estimate the integral in (3.17).

LEMMA 2. Let w=ge", a=1+2n""%; then the integral

j" IIm p*(w)| de

is bounded by a fixed constant, independent of n.
Proof. We obtain for w=e"
p¥(w) =3,(1) +1s,(1),

where s,(7) is defined by (3.9) and §,(¢) is its conjugate trigonometric
polynomial. We have

f" 15.(1)]2 dz<f (xnt)—i— >dt

T 2¢, ™ c?
’ 2 2 ’ 2
<[ wra+Z inmid+ o

—y—1/2n 1 4
<43n4f <t+y+-) dr+i2+ 2n

—y—ln

8 4c2 c2
<z + <cgn

3
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for all # > 1, where ¢, is a constant which we choose greater than 4 for later
purposes. Therefore

T Fid
[ 15,.(2)|? dt = { [s {07 di € cyn. (3.18)
Jon .
Now, we assert
|30 < ¢on’ forall 1. (3.19}

Let us assume that (3.19) is false. Then there exists a point 7, such that

{En(t())l = max lfn(tﬂ 2 C9n3‘

—TRIX
Bernstein’s inequality yields

150l <n® max |5,(0)] =1 [3,(15)]

for all ¢ and by the mean value theorem
‘Erl(t)_§n(t0)i S."l4 I§n(t0)| “‘__ [O!
it follows that

4
501> 13,(t0)] (1 = |t =10} 2=

for all |t~ t,| < 1/2n* and therefore

T 2
| |§,,(t)|2d!>£42n2>cgn

because of ¢, > 4. But this is in contrast to {3.18).
For w=e¢" we obtain from (3.10) and (3.19)

|p*(0)] = /s (D7 + 5.(0)]* < e g0’

An inequality of F. Riesz (cf. [7, p. 40]) yields

7
K Cyon

d
— p¥(w
‘dwp (w)
for all {w| =1 and therefore

d . -
— p¥*(w) <610n75” <cg g n'

dw
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for |w|<o=1+2n"8 Then

2c
[p*(w) — p*(wo)l <=1
n

for all w=w(t)=(1+2n"%)e", wy=wy(r)=e" Finally, we have

[" oo di< [ 1tm p*ov)—Im p*Ow) det [ [1m p*(w)| e

4rc,, 2me, T
<=+ 4|

o)l de.
But then the right-hand side is bounded since

[ orar<a.

4. SIMPLE ZFROS ON THE UNIT CIRCLE

In [4] Erdds and Turén investigated the distribution of zeros of a monic
polynomial p, e 11, bounded on the unit disk. Let us now assume in this
case that all zeros z; of p, are simple zeros of the unit circle. Then we have
to replace (1.4) by

max [P.(2) <4, (4.1)
and the inequality (1.6) by
Pz > — (42)
pn < /B ) .

n

observing that the capacity 1 of the unit disk takes over the role of the
capacity of [ —1, 1], which is 3.

If we reformulate conditions (4.1) and (4.2) using the logarithmic poten-
tials of 7, and the arclength measure p of the unit circle, we have to sub-
stitute these inequalities by

log C,
(U™(z) — Ur(z)| < & —2—=2 (43)

n



&7
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for all |z| > 1+ n % We remark that (4.3} is just the same inequality as
{1.10) of Theorem B since

U™(z) = G(z) = log |zI.

Now, some slight modifications in the above proofs immediately yieid

Taeorem C. Let p,ell,, n=2, be a monic polvnowntial with simple zeros
on the unit circle such that either (4.1) and (4.2) or (4.3) hold. Then for any
subarc

of the unit circle,

log C,,1
n

I(Tn_”)(sz,ﬂ)‘ SC Og n, (44)

where ¢ is an absolute constant independent of n and C,=max(4,, B, n} in
the case (4.1), (4.2).

5. How SHARP ARE THE RESULTS?

Let T, be the Chebyshev polynomial of degree n. Then T ,(x) has the
ZETOS

2j—1=
n 2

=CoS

(I3
A
S,
A
=

j
and the zero counting measure 1, satisfies

, 1
(e = w2 BTl <~

for any interval [o, fJ=[—1, 17. Since

n 14
n—1 4 L IS \ 2 n—1°
2 sin{2j — Li{n/2n}| ~ 2

zngl

Theorem A yields

1 2
e, )T B < e LB
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If we consider the same polynomials on the interval I=

[—1, 1+ (logn/n)*], then some calculations together with Theorem A
show

(log n)?
 logn)®

(T, — i)([e, BDI <

for any subinterval [«, ] of I, where i denotes the equilibrium distribu-
tion of 1. But the real discrepancy between t, and j is O(log n/r). Hence
Theorem A seems not far way from being optimal.

10.
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